Community-Acquired Pneumonia: Current Principles of Evaluation and Therapy
Case Study and Commentary, Steven K. Schmitt, MD

INSTRUCTIONS

The following case study, “Community-Acquired Pneumonia: Current Principles of Evaluation and Therapy,” is accompanied by a continuing medical education (CME) evaluation that consists of 5 multiple-choice questions. After reading the case study, carefully consider each of the questions in the CME evaluation on page 71. Then, circle your selected answer to each question on the CME evaluation form on page 72. In order to receive one CME credit, at least 3 of the 5 questions must be answered correctly. The estimated time for this CME activity is 1 hour.

OBJECTIVES

After participating in the CME activity, primary care physicians should be able to:
1. Recognize the risk factors for morbidity and mortality in patients with community-acquired pneumonia (CAP)
2. Understand the benefits and limitations of currently recommended steps in the evaluation of CAP
3. Understand the current treatment recommendations for CAP and the controversies surrounding these treatments
4. Understand the further evaluation of a pneumonia patient who fails to respond to initial antimicrobial therapy
5. Consider the impact of antibiotic-resistant pathogens on the diagnosis and treatment of pneumonia
6. Understand the conflicting goals that challenge health care providers and systems in seeking favorable outcomes for pneumonia sufferers

INTRODUCTION

Sir William Osler’s “captain of the men of death,” community-acquired pneumonia (CAP), has remained a scourge of the primary care physician and specialist alike. In 1996, the age-adjusted death rate due to pneumonia was 13.6 per 100,000 persons [1], reflecting a 14.3% increase from 1979 to 1996. Estimates of the incidence of pneumonia range from 3 to 4 million cases yearly, and about 20% of these cases require hospitalization [2]. It is estimated that treatment of pneumonia costs $20 million yearly in the United States [3].

The range of differential diagnostic concerns, diagnostic methods, and treatment options for patients with CAP has dramatically expanded during the past 2 decades. There has been an increase in pathogen resistance to commonly used antimicrobial agents and an increase in the number of patients immunocompromised by diseases or medical therapies. By 2000, the number of people older than 65 years is expected to reach 30 million in the United States [4]; this population is more susceptible to pneumonia and its complications because of a higher incidence of comorbid diseases, anatomic derangements of the pulmonary tree, and deficits of cellular and humoral immunity. In addition, economic pressure has forced health systems and providers to reevaluate the treatment of CAP, specifically the routes of antibiotic administration and sites of care. Consequently, the management of an “old” disease entity requires a great deal of “new” knowledge at several decision points in the management process. Differences between 1998 guidelines developed by the Infectious Diseases Society of America (IDSA) [5] and only slightly older guidelines from the American Thoracic Society (ATS) [6] reflect the evolution in CAP management.

CASE 1

Initial Presentation

A 51-year-old college professor presents to her primary care physician in October with a chief complaint of persistent cough and fever.

History

The patient’s cough began 3 weeks ago, at the same time her 16-year-old daughter was recovering from a “chest cold.” Her daughter’s chest cold fully resolved in 10 days without antibiotics. As the daughter was improving, the patient began to note a nonproductive cough, a temperature of 100.5°F, and hoarseness. The patient assumed she had a viral infection, so she took an over-the-counter cough suppressant and ibuprofen. She continued to cough and felt generally unwell. After 2 weeks of these symptoms, she began taking cefaclor from a several-months-old prescription for another family member; this did not relieve her symptoms.

Steven K. Schmitt, MD, Staff Physician, Department of Infectious Disease, Cleveland Clinic Foundation, Cleveland, OH.
In the physician’s office, the patient complains of a paroxysmal cough that it is now keeping her awake at night. She denies sputum production, wheezing, or hemoptysis. She says that her temperature has never exceeded 101.2°F during this course. She admits chills, but not sweats. She has also noted more shortness of breath than usual when taking her customary 1-mile walk. Vocal hoarseness has progressed to the point of hindering her teaching. She recalls that several of her students have been stricken with a similar respiratory illness, and that a few have mentioned taking antibiotics. She has never been exposed to tuberculosis, and she had a negative tuberculin skin test approximately 5 years ago. She has never smoked tobacco. She drinks alcohol only at social occasions and never has more than 2 drinks. She lives at home with her husband and teenaged children, all of whom are well except for the daughter’s recent illness. The patient has not recently traveled; she enjoys gardening and has no pets. The patient has not had the pneumococcal vaccine, but receives the influenza vaccine annually in September. She takes no medications except for those previously mentioned.

Physical Examination

Physical examination reveals a well-nourished woman who appears acutely ill and is hoarse. She is alert and oriented. During the evaluation, she suffers paroxysms of nonproductive cough, making it occasionally difficult for her to complete sentences. Temperature is 101.1°F; blood pressure, 116/78 mm Hg; pulse, 132 bpm; and respiratory rate, 30 breaths/minute.

There is no skin rash and no sinus tenderness. The conjunctivae are clear, and the oropharynx has no lesions, erythema, or exudate. The neck is supple, and there is no palpable lymphadenopathy. No cardiac murmurs are noted.

Lung examination reveals a few crackles in the right midlung zone but no wheezes or rhonchi. There is no dullness to chest percussion, no egophony, and no vocal fremitus. The abdomen is soft and non tender, with active bowel sounds and no hepatosplenomegaly or masses. The genitourinary examination is unremarkable. There is no joint swelling or tenderness. The neurologic examination reveals no focal deficits.

Diagnostic Testing

The correct etiologic diagnosis can be established by a number of modalities (Table 1). The chest radiograph remains the cornerstone in the initial diagnostic evaluation of CAP and is recommended by IDSA in both the inpatient and outpatient settings [5]. Another commonly used tool, although controversial, is the sputum Gram stain and culture.

Sputum Gram Stain and Culture

The sputum Gram stain is thought to represent lower respiratory secretions when more than 25 white blood cells and less than 10 epithelial cells are seen in a low-powered microscopic field [7]. When such a Gram stain also shows a predominant organism, there is a greater than 90% chance of selecting an appropriate empiric antibiotic therapy [8]. This “low-tech,” inexpensive, rapid method is recommended for all CAP patients by the IDSA. However, this recommendation is disputed by the ATS on the basis of variation of test accuracy. The accuracy of the sputum Gram stain is highly dependent on proper collection of a deep-cough specimen before the initiation of antimicrobial therapy and prompt delivery to the microbiology laboratory [5].

Sputum may be difficult to obtain from debilitated patients because of a weak cough, obtundation, or dehydration. In these situations, inhaled nebulized saline may help mobilize secretions for collection. Nasotracheal suctioning

- What is the recommended approach to the initial evaluation of suspected pneumonia?

General Principles

Cost-containment efforts have compelled physicians to consider the potential contribution of each proposed diagnostic study to the treatment plan of a patient with CAP. Also, depending on collection technique and operator skill, microbiologic and serologic studies can lack sensitivity and specificity. These concerns form the basis for the minimalistic diagnostic approach offered by the ATS [6]. In the ATS guidelines, the use of expectorated sputum studies and serologic testing are downplayed, and more aggressive testing is reserved for epidemiologic interest or for patients who are not responding to initial therapy.

Although the economic mandate to reduce testing certainly tempts a physician to offer empiric antibiotic therapy on the basis of history and physical examination findings obtained in the office setting, IDSA contends that this approach should be resisted for several important reasons [5]. First, antibiotics are not entirely benign medications and can have severe adverse effects (eg, hypersensitivity, antibiotic-associated colitis) or can interact with other medications (eg, causing prolongation of the QT interval). More importantly, use of antibiotics for inappropriate indications or with an inappropriately broad spectrum of activity contributes to the development of antibiotic-resistant microbes, limiting treatment choices for the patient and the general population. Finally, therapy based on pure empiricism eliminates the epidemiologic tracking of organisms of public health significance, such as Legionella, drug-resistant pneumococci, hantavirus, and influenza virus. Therefore, the first step in pneumonia management, according to IDSA guidelines, is confirmation of the diagnosis and of an etiologic agent.

Table 1

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumococcus</td>
<td>80%</td>
</tr>
<tr>
<td>Strep. pneumonia</td>
<td>10%</td>
</tr>
<tr>
<td>Influenza</td>
<td>5%</td>
</tr>
<tr>
<td>Mycoplasma</td>
<td>3%</td>
</tr>
</tbody>
</table>

OUTCOMES AND THE PATIENT
can sample the lower respiratory tract directly, but this approach risks oropharyngeal contamination. The clinical history and chest radiograph may dictate the use of other stains, such as the acid-fast stain for mycobacteria, the modified acid-fast stain for *Nocardia*, or the toluidine blue and Gomori methenamine silver stains for *Pneumocystis carinii*.

Direct fluorescent antibody staining of sputum, bronchoalveolar lavage fluid, or pleural fluid may identify *Legionella* species as a pathogen.

The sputum culture remains a controversial tool because of poor collection technique and delayed delivery to the laboratory, antibiotic use prior to collection, and oral contamination [9]; the sensitivity of sputum culture is estimated at 50% [5]. Nevertheless, it is still recommended as a pretreatment specimen with rapid transport to the laboratory to help tailor therapy. It may prove particularly helpful when potentially resistant bacterial pathogens are identified. When indicated by history or chest radiograph, expectorated morning sputum is the preferred specimen for mycobacterial stain and culture. Preantibiotic cultures of blood and pleural fluid, if present, can also yield an etiologic agent and should be obtained.

Serologic Testing

Serologic testing for pathogens such as *Legionella* species, *Mycoplasma* species, and *Chlamydia pneumoniae* are typically performed only in the setting of a high clinical suspicion, and delays of several days in results frequently render these

Table 1. Diagnostic Testing in Outpatient and Inpatient Settings

<table>
<thead>
<tr>
<th>Treatment Setting</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outpatients and inpatients</td>
<td>Chest radiograph</td>
</tr>
<tr>
<td></td>
<td>Sputum Gram stain</td>
</tr>
<tr>
<td></td>
<td>Sputum bacterial culture (optional for outpatients)</td>
</tr>
<tr>
<td>All inpatients</td>
<td>Complete blood count with differential</td>
</tr>
<tr>
<td></td>
<td>Complete metabolic profile</td>
</tr>
<tr>
<td></td>
<td>Arterial blood gases</td>
</tr>
<tr>
<td></td>
<td>Blood cultures (2 before antibiotics)</td>
</tr>
<tr>
<td>Inpatients with appropriate clinical setting</td>
<td>HIV serology</td>
</tr>
<tr>
<td></td>
<td>Legionella serology/urinary antigen/sputum direct fluorescent antibody</td>
</tr>
<tr>
<td></td>
<td>Mycoplasma serology</td>
</tr>
<tr>
<td></td>
<td>Chlamydia serology</td>
</tr>
<tr>
<td></td>
<td>Fungal serology, Histoplasma urinary antigen</td>
</tr>
<tr>
<td></td>
<td>Respiratory specimen for mycobacterial, fungal, Pneumocystis stains/cultures</td>
</tr>
<tr>
<td></td>
<td>Thoracentesis</td>
</tr>
<tr>
<td></td>
<td>Nasopharyngeal swab for viral direct fluorescent antibodies</td>
</tr>
<tr>
<td>Deteriorating patient without microbiologic diagnosis</td>
<td>Bronchoscopy with bronchoalveolar lavage, protected catheter, transbronchial biopsy</td>
</tr>
<tr>
<td></td>
<td>Thoracoscopic or open-lung biopsy</td>
</tr>
<tr>
<td></td>
<td>Transthoracic aspirate*†</td>
</tr>
<tr>
<td></td>
<td>Legionella testing†</td>
</tr>
<tr>
<td></td>
<td>Mycoplasma serology†</td>
</tr>
<tr>
<td></td>
<td>Chlamydia serology†</td>
</tr>
<tr>
<td></td>
<td>Fungal serology, Histoplasma urinary antigen</td>
</tr>
<tr>
<td></td>
<td>Evaluations for heart failure, pulmonary embolus, neoplasm, connective tissue diseases</td>
</tr>
</tbody>
</table>

*Under radiographic guidance, performed by skilled operators.

†If not previously performed in patient who is failing therapy, or as convalescent IgG serology where the initial test was unrevealing and the diagnosis remains unclear.
tests more valuable to the epidemiologist than to the clinician. Serologic testing should be performed in the setting of a typical clinical syndrome or in the setting of a deteriorating patient with no microbiologic diagnosis, and should include sera drawn in both the acute and convalescent phases for comparison. A positive immunoglobulin M (IgM) titer or a fourfold increase in the immunoglobulin G (IgG) titer is suggestive of recent infection with these organisms.

Urinary Assay
A sensitive urinary assay has been developed for the detection of *Legionella pneumophila* antigen [10]. The test is highly specific, but because the urinary antigen persists for up to 1 year after infection, it cannot differentiate between past and current infections. A urinary assay for the detection of *Histoplasma capsulatum* antigen is also available [11]. This highly specific assay can be a useful diagnostic adjunct to traditional fungal complement fixation and immunodiffusion test batteries.

Findings on Outpatient Testing

A chest radiograph shows a patchy infiltrate partially obscuring the right heart border. The cardiac silhouette is of normal size, and there are no pleural effusions. Complete blood count (CBC) shows a mild leukocytosis, with a white blood cell count (WBC) of 14,000/mm3. Basic blood chemistries are normal, and pulse oximetry is 87% without supplemental oxygen. Based on the patient’s outpatient test results and the fact that she has tachypnea and hypoxemia, her physician decides to hospitalize her for initial treatment.

- Was the decision to admit this patient appropriate?

Choosing the Site of Care: The PORT System and Risk Stratification

The complex interplay between host and microbe makes the decision regarding site of care for pneumonia challenging. Several recent studies have attempted to stratify risk on the basis of objective clinical findings. Most useful among these studies is the schema of Fine et al [12], who report the findings of the multicenter Patient Outcomes and Research Team (PORT).

Studying a large cohort of patients with pneumonia, the PORT investigators first established a list of underlying host factors, physical examination findings, laboratory values, and radiographic features disproportionately associated with morbidity and mortality. These factors were prioritized in a point system, with patients assigned to 1 of 5 risk classes (classes I through V) on the basis of total risk score.

<table>
<thead>
<tr>
<th>Risk Class</th>
<th>Point Total</th>
<th>Mortality, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Age < 50 yr and no B or C risks</td>
<td>0.1</td>
</tr>
<tr>
<td>II</td>
<td>≤ 70</td>
<td>0.6</td>
</tr>
<tr>
<td>III</td>
<td>71–90</td>
<td>2.8</td>
</tr>
<tr>
<td>IV</td>
<td>91–130</td>
<td>8.2</td>
</tr>
<tr>
<td>V</td>
<td>> 130</td>
<td>29.2</td>
</tr>
</tbody>
</table>

(Table 2). This system was then validated in a retrospective analysis of 38,039 patients. Patients in classes I through III had less than 3% mortality, and less than 6% of them required admission to an intensive care unit. Fewer than 10% of patients in classes I and II who were treated as outpatients eventually required hospitalization. Patients in classes IV

Table 2. PORT Pneumonia Prediction System

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Point Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Age, sex, and residence</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Age, yr</td>
</tr>
<tr>
<td>Female</td>
<td>(Age, yr) – 10</td>
</tr>
<tr>
<td>Nursing home</td>
<td>10</td>
</tr>
<tr>
<td>B. Underlying chronic disease</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>30</td>
</tr>
<tr>
<td>Hepatic disease</td>
<td>20</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>10</td>
</tr>
<tr>
<td>Renal disease</td>
<td>10</td>
</tr>
<tr>
<td>Stroke/TIA</td>
<td>10</td>
</tr>
<tr>
<td>C. Vital signs and mental status</td>
<td></td>
</tr>
<tr>
<td>Temperature < 95° or > 104° F</td>
<td>15</td>
</tr>
<tr>
<td>Systolic blood pressure < 90 mm Hg</td>
<td>20</td>
</tr>
<tr>
<td>Pulse ≥ 125/min</td>
<td>10</td>
</tr>
<tr>
<td>Respiratory rate ≥ 30/min</td>
<td>20</td>
</tr>
<tr>
<td>Disorientation</td>
<td>20</td>
</tr>
<tr>
<td>D. Initial testing</td>
<td></td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>10</td>
</tr>
<tr>
<td>Sodium < 130 mmol/L</td>
<td>20</td>
</tr>
<tr>
<td>Glucose ≥ 250 mg/dL</td>
<td>10</td>
</tr>
<tr>
<td>BUN ≥ 30 mg/dL</td>
<td>20</td>
</tr>
<tr>
<td>Hematocrit < 30%</td>
<td>10</td>
</tr>
<tr>
<td>Arterial pH < 7.35</td>
<td>30</td>
</tr>
<tr>
<td>PaO$_2$ < 60 mm Hg or O$_2$ saturation < 90%</td>
<td>10</td>
</tr>
</tbody>
</table>

Vol. 6, No. 8 JCOM September 1999 63
and V experienced a steep increase in mortality (8% and 29%, respectively). Based on this information, the authors recommend that patients in risk classes IV and V should be routinely hospitalized, and patients in risk classes I and II should be routinely treated as outpatients. Patients in risk class III can either be treated as outpatients or briefly admitted. According to the PORT scoring system, the patient in case 1 has a total risk score of 81 points, placing her in risk class III. (This risk class corresponds to an overall mortality of 2.8% in the validation cohort.)

Practically applied, the PORT system requires a small set of readily available laboratory tests (arterial blood gases, a basic metabolic profile, and a CBC), a chest roentgenogram, and a thorough history and physical examination. The PORT system enables the clinician to approximate the likelihood that a patient will thrive in the outpatient treatment setting.

Acknowledging the myriad factors that are not quantifiable by any risk stratification system, the authors point out that outpatient oral therapy presumes the ability to ingest and absorb medication, adhere to a regimen, and return for follow-up visits. They also note that any such set of guidelines is subject to considerable modification by individual patient scenarios and clinical judgment, and will require large prospective clinical trials to fully validate.

Inpatient Evaluation

Once a patient is admitted to the hospital, IDSA guidelines again stress the need to identify a pathogen. Ultimately, the confirmation of a pathogen requires either strong serologic evidence or its isolation from respiratory secretions, blood, or a normally sterile body fluid. Although few studies have rigorously investigated the value of diagnostic testing in pneumonia, at least one study [8] has documented faster resolution of fever with a proven microbiologic etiology, and another has linked incorrect antibiotic therapy to poor outcome [13]. In addition, emerging bacterial resistance to antimicrobial agents and newer, more costly therapies provide indirect evidence that empiricism is costly both in terms of selection of resistant organisms and drug cost.

Initial Treatment and Clinical Course

The patient is admitted to the hospital. Sputum Gram stain reveals numerous white blood cells and mixed flora, and the patient is started on empiric intravenous ceftriaxone and oral azithromycin to cover both typical and atypical pathogens, as suggested by IDSA guidelines. Cultures of blood and sputum, obtained before initiation of antibiotics, are sterile. The patient’s fever gradually disappears over 2 days. Physical examination of the lungs shows clearing, and by hospital day 3, oxygenation improves enough to allow discontinuation of supplemental oxygen.

Empiric Antimicrobial Therapy

The choices for empiric antimicrobial therapy of pneumonia outlined in the IDSA guidelines (Tables 3 and 4) have been driven by 2 factors: emerging pathogens and emerging resistance to traditional antimicrobial selections. Although typical pathogens (eg, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Moraxella catarrhalis*, *Klebsiella pneumoniae*) remain prevalent, the role of atypical pathogens (eg, *C. pneumoniae*, *Mycoplasma pneumoniae*, *L. pneumophila*) in CAP has been increasingly recognized. Macrolides, newer quinolones, and tetracyclines have been selected as empiric therapy in the outpatient setting for their good activity against both atypical and typical pathogens. Also, emerging multidrug resistance among pneumococci has made the newer quinolones (ie, levofloxacin, trovafloxacin, grepafloxacin, sparfloxacin), to which these isolates remain largely susceptible, an attractive therapy. In the hospital, the use of ceftriaxone or cefotaxime (which have the best in vitro pneumococcal activity among cephalosporins) with or without a macrolide (for atypical pathogens) is recommended for nonsevere pneumonias. Newer quinolones, which have good activity against both typical and atypical pathogens, provide another option. This latter recommendation has been controversial because of a perceived dearth of published clinical experience.

In recent years, there has been an explosion in the development of well-absorbed oral antibiotics with favorable pharmacokinetic profiles. Most notable among these are the newer fluoroquinolones and macrolides, several of which are indicated for once-daily dosing. Although oral therapy may have significant social [14], economic, and medical benefits, there are few studies that directly compare the safety and efficacy of intravenous (IV) and oral therapy in the hospital setting [15]. Also, IV therapy is a criterion for hospitalization in many resource utilization systems. Consequently, few physicians choose oral antibiotics for initial therapy of pneumonia in hospitalized patients.
IV-to-Oral Switch Therapy

More data exist to support the use of IV-to-oral “switch” therapy than for oral therapy alone. Several studies address this approach in a controlled, randomized fashion; these have been recently reviewed [16]. A commonsense approach, based on the work of Halm et al [17], suggests that intravenous therapy may be converted to oral administration under the following circumstances:

- The patient is improving clinically, which is defined as body temperature ≤ 101°F, pulse ≤ 100 bpm, systolic blood pressure ≥ 90 mm Hg, respiratory rate ≤ 24 breaths/minute, and oxygen saturation ≥ 90%
- The patient is able to ingest and absorb oral antibiotics
- The patient has adequate social supports to note and report any change in clinical status
- The patient is capable of keeping outpatient follow-up visits

Halm and colleagues [17] suggest that most patients will meet these criteria in a median of 3 hospital days, although some variability is seen in everyday practice.

Table 3. Empiric Antibiotic Therapy

<table>
<thead>
<tr>
<th>Setting</th>
<th>Treatment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outpatient</td>
<td></td>
</tr>
<tr>
<td>Without modifying factors</td>
<td>Macrolides, newer fluoroquinolones, doxycycline</td>
</tr>
<tr>
<td>Suspected drug-resistant pneumococci</td>
<td>Newer fluoroquinolones</td>
</tr>
<tr>
<td>Aspiration</td>
<td>Amoxicillin/clavulanate</td>
</tr>
<tr>
<td>Adult ≤ 40 yr</td>
<td>Doxycycline</td>
</tr>
<tr>
<td>Inpatient</td>
<td></td>
</tr>
<tr>
<td>On regular ward</td>
<td>Ceftriaxone or cefotaxime or a β-lactam/β-lactamase inhibitor combination + macrolide or a newer fluoroquinolone alone or azithromycin alone</td>
</tr>
<tr>
<td>Intensive care unit</td>
<td>Ceftriaxone or cefotaxime or a β-lactam/β-lactamase inhibitor combination + erythromycin, azithromycin, or a newer fluoroquinolone</td>
</tr>
<tr>
<td>Lung with structural disease</td>
<td>Antipseudomonal penicillin/ cephalosporin or carbapenem plus aminoglycoside</td>
</tr>
<tr>
<td>Penicillin allergy</td>
<td>Newer fluoroquinolone with or without clindamycin</td>
</tr>
<tr>
<td>Aspiration</td>
<td>Fluoroquinolone plus clindamycin or metronidazole or a β-lactam/β-lactamase inhibitor combination alone</td>
</tr>
</tbody>
</table>

Table 4. Antimicrobial Therapy for Selected Pathogens

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Treatment Options*†‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus pneumonia</td>
<td></td>
</tr>
<tr>
<td>MIC < 0.1 mcg/mL</td>
<td>Penicillin, amoxicillin, cephalosporins, macrolides, clindamycin, fluoroquinolones, doxycycline</td>
</tr>
<tr>
<td>MIC 0.1–1.0 mcg/mL</td>
<td>Penicillin G high-dose, ceftriaxone, cefotaxime, amoxicillin, fluoroquinolones, clindamycin, doxycycline, oral cephalosporins</td>
</tr>
<tr>
<td>MIC > 2.0 mcg/mL</td>
<td>Based on susceptibility profile; fluoroquinolones, vancomycin</td>
</tr>
<tr>
<td>Empiric</td>
<td>Based on community resistance patterns; fluoroquinolones, penicillin, others as listed above</td>
</tr>
<tr>
<td>Legionella species</td>
<td></td>
</tr>
<tr>
<td>Macrolides ± rifampin, fluoroquinolones, doxycycline ± rifampin</td>
<td></td>
</tr>
<tr>
<td>Chlamydia pneumoniae</td>
<td>Doxycycline, macrolides, fluoroquinolones</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>Doxycycline, macrolides, fluoroquinolones</td>
</tr>
</tbody>
</table>

* Cephalosporins: cefazolin, cefuroxime, cefotaxime, ceftriaxone (parenteral); cefpodoxime, cefprozil, cefuroxime (oral).
† Macrolides: erythromycin, clarithromycin, azithromycin.
‡ Fluoroquinolones: levofloxacin, sparfloxacin, garefloxacin, trovafloxacin, (ciprofloxacin, ofloxacin, levofloxacin for *Legionella* species).
COMMUNITY-ACQUIRED PNEUMONIA

Serology Findings and Switch to Oral Therapy

Serologic testing is positive for C. pneumoniae IgM, allowing definitive therapy. The patient is discharged on doxycycline. After a total of 14 days of systemic antimicrobial therapy, she is completely recovered and asymptomatic.

CASE 2

Initial Presentation

A 23-year-old graduate student presents to the college infirmary complaining of cough, fever, and shaking chills. The patient felt fine until 3 days ago, when he began to cough and feel generally unwell. His cough was productive of moderate amounts of yellow sputum without blood. In the 12 hours before presenting to the infirmary, the patient noted a fever of 102°F and experienced severe, teeth-chattering chills unrelieved by ibuprofen. A friend witnessed these symptoms and convinced the patient to come to the infirmary. The patient also admits to being “a little short of breath.”

History

The patient has essentially no past medical or surgical history. He has no medication allergies and is currently not taking any medication. He has not traveled recently, nor has he had contact with sick individuals. He has never been exposed to tuberculosis and had a negative tuberculin skin test earlier this year as part of a routine physical examination. He has no risks for HIV infection. He has never had influenza or pneumococcal vaccine.

Physical Examination

The patient is an acutely ill–appearing young man in mild respiratory distress. Temperature is 104°F; pulse, 132 bpm; blood pressure, 102/60 mm Hg; and respiratory rate, 30 breaths/minute. The skin is mildly diaphoretic. The neck is supple, and there is no palpable lymphadenopathy. The heart rhythm is tachycardic but regular and without murmur. Lung examination is remarkable for crackles in both bases with egophany in the right lower field, but no dullness to percussion. The abdomen is benign and without hepatosplenomegaly. No peripheral edema and no focal neurologic deficits are noted.

Outpatient Testing

Pulse oxygen saturation is 88% without supplemental oxygen. A chest radiograph reveals alveolar infiltrates in both lower lobes, with a small right pleural effusion.

Hospital Admission and Clinical Course

The patient is admitted to the hospital. After the collection of a sputum specimen and blood cultures, he is started on high-dose IV erythromycin (1 g/6 hr) and IV ceftriaxone (1 g/24 hr). Initial laboratory testing reveals a WBC of 18,000/mm³ with a neutrophil predominance in the differential count. Hemoglobin is 13.1 g/dL, and platelet count is 425,000/mm³. Blood chemistries show mild elevations (less than 2 times normal) of aspartate transaminase and alkaline phosphatase. Arterial blood gases are remarkable for a PaO₂ of 56 mm Hg, a PaCO₂ of 24 mm Hg, and a pH of 7.39. The sputum Gram stain, unfortunately obtained several hours after the initiation of antibiotic therapy, reveals many polymorphonuclear leukocytes with few epithelial cells, but no organisms are seen.

About 24 hours after admission, the patient suffers a cardiovascular collapse and deepening hypoxemia, requiring mechanical ventilation and IV pressors for blood pressure support. A repeat chest radiograph shows new infiltrates in the right middle lobe and left upper lobes in addition to worsening infiltrates in the previously noted sites. The WBC has risen to 23,000/mm³. A sputum culture (obtained after the initiation of antibiotic therapy) and 2 blood cultures (obtained before the initiation of antibiotic therapy) are negative at 24 hours.

What is the rationale for giving high-dose erythromycin?

Therapeutic Options for Legionella Infections

This patient has a rapidly progressive multilobe pneumonia with evolving sepsis syndrome, and infection with Legionella species clearly must be considered in the etiologic differential diagnosis. The negative sputum Gram stain and early negative cultures support the diagnosis. Given this scenario, it is appropriate to reassess the therapeutic options now available for Legionnaire’s disease.

Erythromycin has long held the position as drug of choice in Legionella infections, based on clinical successes and a paucity of available alternatives. However, high-dose erythromycin has several clinically significant drawbacks, including venous and gastrointestinal intolerance, reversible otoxicity, and the large fluid volume required for each dose. The newer macrolide, azithromycin, and several newer fluoroquinolones, including ciprofloxacin, ofloxacin, and levofloxacin, all have excellent in vitro activity against Legionella species and favorable pharmacokinetics and side effects profiles. In addition, fluoroquinolones and azithromycin possess excellent intracellular penetration that improves killing of intracellular organisms [18]. However, clinical data to support the use of these newer agents for severe disease are scant and largely based on animal models [5]. Despite this, IDSA guidelines and some clinicians now consider azithromycin, the above-mentioned fluoroquinolones, and doxycycline to be preferred over erythromycin in the treatment of legionellosis. However, erythromycin will likely remain an important part of the armamentarium against this pathogen until further clinical experience with these newer agents emerges.
In the treatment of severe pneumonia, the clinician also must be mindful of pneumococci, *Staphylococcus aureus*, and gram-negative organisms in the microbiologic differential diagnosis. This consideration is reflected in IDSA guidelines by the addition of a third-generation cephalosporin or a β-lactam/β-lactamase combination to the atypical coverage offered by a macrolide or fluoroquinolone.

Switch of Antibiotics and Further Testing

The patient is continued on ceftriaxone but is switched from erythromycin to IV azithromycin (500 mg/day) due to concern for intracellular penetration, with an ongoing working diagnosis of legionellosis. The patient’s clinical status is unimproved at 48 hours, and he remains intubated with increasing doses of pressors; his cultures remain negative. A urine specimen is sent for *Legionella* antigen assay; this test is also negative.

Laboratory Tests

Serologic and urinary antigen testing, as described above, may provide important information, albeit with a delay of 1 or several days in most centers. Tuberculin skin testing may provide a clue to mycobacterial disease. Nasopharyngeal swabs for direct fluorescent antibody testing may yield evidence of viral respiratory antigens. When these procedures fail to yield a microbiologic diagnosis, more invasive diagnostic techniques may be indicated.

Transthresholdal Aspiration and Fiberoptic Bronchoscopy

The value of transtracheal aspiration depends on the operator’s skill; as this procedure can have dangerous complications. Now performed only rarely, it has been largely supplanted by fiberoptic bronchoscopy (FOB) in the diagnosis of pneumonia [19]. FOB allows the use of several diagnostic techniques. Bronchoalveolar lavage with saline can obtain deep respiratory specimens for a broad range of stains and cultures. Transbronchial biopsy of infiltrated lung parenchyma can reveal alveolar or interstitial pneumonitis, viral inclusion bodies, and invading fungal or mycobacterial organisms. Quantitative culture with a protected brush catheter is used to distinguish between tracheobronchial colonizers and pneumonic pathogens [20]. When secretions cultured from a brush specimen contain 10^5 CFU/mL of a bacterial pathogen, lower respiratory infection should be suspected.

Thoracic or Open-Lung Biopsy

A more substantial amount of lung tissue may be obtained for culture and histologic examination by thoroscopic or open-lung biopsy. These more invasive procedures usually are reserved for the unimproved, critically ill patient with a pneumonia that defies diagnosis by less invasive techniques.

Molecular Techniques

Powerful molecular techniques, although expensive and not available in every center, are increasingly being applied to the diagnosis of pneumonia. DNA probes have been used for the detection of *Legionella* species, *M. pneumoniae*, and *Mycobacterium tuberculosis* in sputum [21]. These probes have excellent sensitivity and specificity but may produce false-positive results. The polymerase chain reaction has been shown to be a sensitive tool for the early detection of *M. tuberculosis* in sputum specimens. Because of the potential for an early and accurate microbiologic diagnosis, these techniques will likely play a greater role in future diagnostic algorithms.

Blood Culture Findings and Therapy Change

On hospital day 3, both blood cultures from the day of admission are found to have growth of gram-positive cocci in pairs and chains. The following day, these are identified as *S. pneumoniae*. Susceptibility studies show the isolate is
COMMUNITY-ACQUIRED PNEUMONIA

highly resistant to penicillin, cephalosporins, and macrolides. At this point, the patient’s therapy is changed to vancomycin. The patient recovers after a total hospitalization of 15 days, 10 of these in the intensive care unit, with an additional week of oral levofloxacin following discharge.

- How could this patient have been managed differently?

Pitfalls in Pneumonia Management

In case 2, failure to respond to a macrolide/β-lactam combination in a patient with a rapidly progressive syndrome consistent with overwhelming infection should have raised the possibility of a drug-resistant bacterial pathogen. In addition, the clinicians placed much emphasis on the negative Gram stain, which was collected late and possibly rendered unrevealing by prior antibiotic therapy, illustrating the importance of proper technique and timing in the use of this tool. Pneumococci can produce a rapidly progressive pneumonia outside the typical syndrome of lobar pneumonia with a single rigor and rust-colored sputum. Given emerging multiple drug resistance, a cogent argument can be made for empiric addition of vancomycin at 48 hours of nonresponse, rather than awaiting definitive microbiologic confirmation in a critically ill patient. If a pathogen can be identified that is susceptible to clinically effective agents other than vancomycin, it can later be deleted from the regimen.

- How have drug-resistant pathogens affected the management of CAP?

Drug-Resistant Bacteria: A Mounting Challenge

During this decade, there has been an explosive, worldwide increase in antimicrobial resistance among bacteria. Among pneumonic pathogens, S. pneumoniae is the most striking example. S. pneumoniae is the most common etiology of pneumonia, with 14 to 46 cases per 1000 person-years in the elderly population in the United States; pneumococcal pneumonia is associated with an estimated 30% mortality when left untreated [22]. Although pneumococci have traditionally been exquisitely susceptible to penicillin, many communities in the United States and worldwide have noted endemic strains of the organism possessing intermediate- or high-level resistance to penicillin. The Centers for Disease Control and Prevention report that 35% of pneumococcal isolates exhibit penicillin resistance in some areas of the country, although considerable geographic variation exists [23]. Even more concerning is the fact that many of highly penicillin-resistant strains are also resistant to multiple cephalosporins, erythromycin, and trimethoprim-sulfamethoxazole. Fortunately, many multiresistant strains remain susceptible to the newer fluoroquinolone agents, including levofloxacin, sparflloxacin, grepafloxacin, and trovafloxacin; however, resistance among pneumococci to these agents has already begun to emerge [24]. Of note, intermediate resistance to penicillins is easily overcome with the high levels of drug attainable with high-dose penicillin or with ceftriaxone or cefotaxime. Imipenem may also be effective for some strains. No strains with resistance to vancomycin have been isolated.

Local patterns of antimicrobial resistance as well as the emerging side effects profiles of these newer drugs may have a significant impact on the selection of antimicrobials. Together, these factors provide a powerful argument for culture confirmation of the bacterial agents of pneumonia. They also give sound reason in favor of pneumococcal vaccination, which can prevent disease with resistant and susceptible strains alike.

Simultaneous with the increase in pneumococcal resistance, there has been the emergence of resistance among other gram-positive pathogens, such as enterococi and staphylococci. Many experts now feel that nonmedical uses of antimicrobial agents (eg, in animal feeds) have played an important role in the development and spread of resistant microbes [25]. However, investigators and clinicians also stress that inappropriate initiation of broad-spectrum antibiotics for nonbacterial syndromes, failure to collect cultures at all, and failure to appropriately narrow therapy to fit culture isolates have exerted selective pressure favoring resistant pathogens [26].

CONCLUSION

Clinical Outcomes in Pneumonia

Despite resistant pathogens and difficulties in diagnosis, patients with pneumonia have generally favorable clinical outcomes. In a recent study of the PORT cohort, Fine and colleagues [27] report that patients hospitalized with pneumonia survived to 30 days in 92% of cases and returned to usual employment in 82% of cases, despite having residual symptoms in 86% of cases. Regardless, medical management of the patient with pneumonia at the turn of the millennium seems dominated by 2 sharply conflicting outcome goals—containment of cost and containment of antimicrobial resistance. Retrospective studies have shown no difference in outcomes in pneumonia patients with and without a microbiologic diagnosis [28,29]. The value of tools such as Gram stain and culture of expectorated sputum and serologic testing for various pathogens has been questioned by many authors [5], and these tests provide easy targets for those seeking to reduce costs in medical care.

The real cases described above are good examples of how the sputum Gram stain and culture can be insensitive when poorly collected or when an atypical pathogen is present.
They highlight that information from such studies is more likely to be clinically relevant when positive (eg, a predominant organism on Gram stain or in culture). Case 2 further emphasizes the utility of blood cultures in the patient with severe pneumonia, even when growth is atypically late. Likewise, more sensitive molecular techniques, almost certain to become more prominent in the diagnostic algorithm of many clinicians out of frustration with currently available tests, are equally certain to be expensive. Despite these shortcomings, the IDSA guidelines make a cogent argument for attempting to make a microbiologic diagnosis with the available tools, however flawed.

Costs Related to Diagnosis and Treatment

The publication of the most recent ATS guidelines and the newer IDSA guidelines gives rise to this question: Can medicine afford the unbridled empiricism that has characterized antibiotic prescribing since the arrival of these agents? The costs of treatment failures and additional erosion of the effectiveness of the available antimicrobial pharmacopeia, although far more difficult to measure, are no less tangible than the cost of a Gram stain. Is the potential savings of additional hospital/intensive care unit days, at this point not well-documented because of a lack of good prospective studies, worth the smaller expense of a Gram stain? Is prevention of morbidity and mortality due to resistance in virulent pathogens, such as pneumococci or S. aureus, worth the cost of a sputum culture or a molecular probe? Although answers to these questions are outcomes research opportunities not yet seized, the lack of success in containing resistant enterococci and pneumococci worldwide suggest that additional attempts to focus therapy are worth the cost. It also appears from preliminary data that adequate therapy based on a gram stain may hasten resolution of fever and lack of adequate therapy can lead to worse outcomes [8,13].

Although syndrome overlap frequently precludes assumptions that might be used to construct cost-reducing diagnostic algorithms, the prudent clinician can often minimize cost by focusing on important historical and clinical features. Some of the additional cost incurred in a more extensive evaluation might also be defrayed by cost savings from oral and intravenous-to-oral switch therapies, with studies stratified by systems such as the PORT prediction system. These therapies offer potential improved outcomes in terms of patient satisfaction and minimization in productivity loss; quantitation of these improvements form another area of opportunity for study.

Impact of Newer CAP Guidelines

The potential impact of the PORT prediction rule and IDSA guidelines is significant for managed care and health systems. Considerable cost savings can be realized both in the identification of a low-risk group of patients who can be safely treated in the outpatient setting with oral antibiotics, and the use of clinical algorithms that encourage switching from IV to oral therapy when appropriate. For instance, Chan et al [30] predicted a cost savings of 176,000 pounds (UK) if 800 patients were treated with oral therapy over a single year. Cunha [31] showed that combined cost of drug plus administration was reduced tenfold when an oral antibiotic was used in place of an IV formulation. Ramirez and colleagues [32] estimated a savings of $104,524 in treating 74 patients with IV-to-oral switch therapy, with only a single readmission.

The cost-effectiveness of diagnostic testing to establish an etiologic diagnosis is somewhat more difficult to evaluate. Although at first glance an increase in direct costs is suggested from testing, it is possible that the more targeted therapy offered by a specific microbiologic diagnosis may offer long-term cost savings in the form of more rapid clinical improvement, decreased length of hospital stay, fewer treatment failures, fewer complications, and the use of less-expensive antibiotics. Even more ephemeral, but no less important, is the theoretical discouragement of bacterial resistance by targeted therapy. The true economic impact of these factors awaits further analysis. In any case, it is likely that the PORT data and guidelines such as those published by the IDSA and ATS will be used by managed care organizations and health systems to construct clinical algorithms for the management of CAP, to which physicians may be held accountable. Clearly, Osler’s captain still commands our attention and demands further rigorous study to optimize treatment outcomes.

References

COMMUNITY-ACQUIRED PNEUMONIA

The Journal of Clinical Outcomes Management acknowledges Pfizer Inc., whose unrestricted educational grant made possible the preparation of this case study.

Copyright 1999 by Turner White Communications Inc., Wayne, PA. All rights reserved.
1. Which of the following statements about diagnostic testing for pneumonia is FALSE?
(A) The sputum specimen should be collected before the initiation of antimicrobial therapy
(B) The sensitivity of sputum culture is approximately 50%
(C) Serologic testing should be performed only in the setting of high clinical suspicion
(D) The American Thoracic Society recommends sputum Gram stain for all community-acquired pneumonia (CAP) patients

2. According to the PORT criteria, the mortality risk for a 75-year-old male nursing home resident with pneumonia and congestive heart failure but no other risk factors is:
(A) 3%
(B) 8%
(C) 15%
(D) 30%

3. Which of the following agents of pneumonia is usually diagnosed by serology rather than culture?
(A) *Streptococcus pneumoniae*
(B) *Klebsiella pneumoniae*
(C) *Haemophilus influenzae*
(D) *Mycoplasma pneumoniae*
(E) *Moraxella catarrhalis*

4. Which of the following tests should NOT be considered in the initial evaluation of a patient hospitalized with non-severe pneumonia?
(A) Sputum culture
(B) Sputum Gram stain
(C) Bronchoscopy
(D) Arterial blood gases
(E) Blood cultures

5. For a patient with *Streptococcus pneumoniae* pneumonia whose minimal inhibitory concentration is 0.5 mcg/mL, all of the following are appropriate initial antibiotic therapy EXCEPT:
(A) High-dose penicillin G
(B) Ceftriaxone
(C) Vancomycin
(D) Levofloxacin
EVALUATION FORM: Community-Acquired Pneumonia: Current Principles of Evaluation and Therapy

To receive CME credit for this case study, read the case study and then answer the multiple-choice questions on page 71. Circle your answers below. Also, please respond to the four questions that follow. Then, detach the evaluation form and mail or FAX to:

JCOM CME Evaluation
Wayne State University
University Health Center, 5E
4201 St. Antoine
Detroit, MI 48201
Phone: (313) 577-1453 FAX: (313) 577-7554

Circle your answer to the CME questions below:
1. A B C D
2. A B C D
3. A B C D E
4. A B C D E
5. A B C D

Please answer the following questions:
1. In general, how do you rate the information presented in the case study?
 - [] excellent
 - [] good
 - [] fair
 - [] poor

2. Do you find the information presented in this case study to be fair, objective, and balanced?
 - [] yes
 - [] no

3. Name three clinical conditions that, in your experience, lead to less than optimal patient outcomes:
 Condition 1: __
 Condition 2: __
 Condition 3: __

4. Name three clinical topics you would like explored in future JCOM case studies:
 Topic 1: __
 Topic 2: __
 Topic 3: __

Please print clearly:

Name: __
Address: _______________________________________
City: ___________________ State: ___________________
Zip: ________________ Phone: ____________________
Social Security #: ____________________________
Medical specialty: ______________________________

Note: CME credit letter and correct responses will be sent to the above-named person.

Wayne State University School of Medicine is accredited by the Accreditation Council for Continuing Medical Education to sponsor continuing medical education for physicians.

The Wayne State University School of Medicine designates this continuing medical education activity for 1 credit hour of the Physician’s Recognition Award of the American Medical Association.

The credit designation for this activity will expire on June 30, 2000.